Coloring the Plane with Rainbow Squares

Mike Krebs

Joint work with Richard Katz and Anthony Shaheen
The Hadwiger-Nelson problem
The Hadwiger-Nelson problem

Assign every point in the plane a color so that no two points of distance 1 from each other have the same color.
The Hadwiger-Nelson problem

Assign every point in the plane a color so that no two points of distance 1 from each other have the same color.

What is the smallest number of colors needed?
The Hadwiger-Nelson problem

Assign every point in the plane a color so that no two points of distance 1 from each other have the same color.

What is the smallest number of colors needed?

The first thing to notice is, at least three colors are needed.
The Hadwiger-Nelson problem

Assign every point in the plane a color so that no two points of distance 1 from each other have the same color.

What is the smallest number of colors needed?
The Hadwiger-Nelson problem

Assign every point in the plane a color so that no two points of distance 1 from each other have the same color.

What is the smallest number of colors needed?

At least 4, and at most 7.
A variation on the Hadwiger-Nelson problem
A variation on the Hadwiger-Nelson problem

Assign every point in the plane a color.
A variation on the Hadwiger-Nelson problem

Assign every point in the plane a color.

Call a square a \textit{rainbow square} if its vertices all have different colors.
A variation on the Hadwiger-Nelson problem

Assign every point in the plane a color.

Call a square a *rainbow square* if its vertices all have different colors.

What is the smallest number of colors needed so that every unit square is a rainbow square?
A Putnam problem
A Putnam problem

A function $f : \mathbb{R}^2 \rightarrow \mathbb{R}$ has the property that

$$f(A) + f(B) + f(C) + f(D) = 0$$

whenever A, B, C, and D are the vertices of a square.
A function $f : \mathbb{R}^2 \to \mathbb{R}$ has the property that

$$f(A) + f(B) + f(C) + f(D) = 0$$

whenever A, B, C, and D are the vertices of a square.

Must f be the zero function?
A Putnam problem

A function $f : \mathbb{R}^2 \to \mathbb{R}$ has the property that

$$f(A) + f(B) + f(C) + f(D) = 0$$

whenever A, B, C, and D are the vertices of a square.

Must f be the zero function?

Answer: Yes.
A Putnam problem

Proof:
A Putnam problem

Proof:
A Putnam problem

Proof:

\[f(A) + f(B) + f(P) + f(D) = 0 \]
\[f(B) + f(C) + f(E) + f(P) = 0 \]
\[f(P) + f(E) + f(H) + f(G) = 0 \]
\[f(D) + f(P) + f(G) + f(F) = 0 \]
A Putnam problem

Proof:

\[f(A) + f(B) + f(P) + f(D) = 0 \]
\[f(B) + f(C) + f(E) + f(P) = 0 \]
\[f(P) + f(E) + f(H) + f(G) = 0 \]
\[f(D) + f(P) + f(G) + f(F) = 0 \]

\[f(A) + f(C) + f(H) + f(F) + 2f(B) + 2f(E) + 2f(G) + 2f(D) + 4f(P) = 0 \]
A Putnam problem

Proof:

\[f(A) + f(B) + f(P) + f(D) = 0 \]
\[f(B) + f(C) + f(E) + f(P) = 0 \]
\[f(P) + f(E) + f(H) + f(G) = 0 \]
\[f(D) + f(P) + f(G) + f(F) = 0 \]
\[f(A) + f(C) + f(H) + f(F) + 2f(B) + 2f(E) + 2f(G) + 2f(D) + 4f(P) = 0 \]
\[f(P) = 0 \]
A Putnam problem

Proof:

\[f(A) + f(B) + f(P) + f(D) = 0 \]
\[f(B) + f(C) + f(E) + f(P) = 0 \]
\[f(P) + f(E) + f(H) + f(G) = 0 \]
\[f(D) + f(P) + f(G) + f(F) = 0 \]
\[f(A) + f(C) + f(H) + f(F) + 2f(B) + 2f(E) + 2f(G) + 2f(D) + 4f(P) = 0 \]
\[f(P) = 0 \]
Q.E.D.
A variation on a Putnam problem
A variation on a Putnam problem

A function $f : \mathbb{R}^2 \to \mathbb{R}$ has the property that

$$f(A) + f(B) + f(C) + f(D) = 0$$

whenever A, B, C, and D are the vertices of a unit square.

Must f be the zero function?
A variation on a Putnam problem

A function $f : \mathbb{R}^2 \to \mathbb{R}$ has the property that

$$f(A) + f(B) + f(C) + f(D) = 0$$

whenever A, B, C, and D are the vertices of a unit square.

Must f be the zero function?

Answer: Yes.
A variation on a Putnam problem

Proof:
A variation on a Putnam problem

Proof:
Complicated.
A variation on a Putnam problem

Proof:

Complicated.
A variation on the Hadwiger-Nelson problem
A variation on the Hadwiger-Nelson problem

Assign every point in the plane a color.
A variation on the Hadwiger-Nelson problem

Assign every point in the plane a color.

Call a square a *rainbow square* if its vertices all have different colors.
A variation on the Hadwiger-Nelson problem

Assign every point in the plane a color.

Call a square a \textit{rainbow square} if its vertices all have different colors.

What is the smallest number of colors needed so that every unit square is a rainbow square?
A variation on the Hadwiger-Nelson problem

Theorem: At least 5 colors are needed.
A variation on the Hadwiger-Nelson problem

Theorem: At least 5 colors are needed.

Proof:
A variation on the Hadwiger-Nelson problem

Theorem: At least 5 colors are needed.

Proof: Temporarily assume 4 colors suffice:
A variation on the Hadwiger-Nelson problem

Theorem: At least 5 colors are needed.

Proof: Temporarily assume 4 colors suffice: red, blue, green, and hot pink.
Theorem: At least 5 colors are needed.

Proof: Temporarily assume 4 colors suffice: red, blue, green, and hot pink.

Define a function $f : \mathbb{R}^2 \to \mathbb{R}$ by $f(x) = 3$ if x is colored red, and $f(x) = -1$ otherwise.
A variation on the Hadwiger-Nelson problem

Theorem: At least 5 colors are needed.

Proof: Temporarily assume 4 colors suffice: red, blue, green, and hot pink.

Define a function $f : \mathbb{R}^2 \to \mathbb{R}$ by $f(x) = 3$ if x is colored red, and $f(x) = -1$ otherwise.

Then f sums to zero on the corners of every unit square.
A variation on the Hadwiger-Nelson problem

Theorem: At least 5 colors are needed.

Proof: Temporarily assume 4 colors suffice: red, blue, green, and hot pink.

Define a function $f : \mathbb{R}^2 \rightarrow \mathbb{R}$ by $f(x) = 3$ if x is colored red, and $f(x) = -1$ otherwise.

Then f sums to zero on the corners of every unit square. So f is the zero function. Contradiction. Q.E.D.
A variation on the Hadwiger-Nelson problem

Theorem: At most 13 colors are needed.

Proof:
| Other variations |
Other variations

Shapes other than squares (arbitrary finite sets)
Other variations

Shapes other than squares (arbitrary finite sets)

C. de Groote and M. Duerinckx,

Functions with constant mean on similar countable subsets of \(\mathbb{R}^2 \),

Other variations

Shapes other than squares (arbitrary finite sets)

Other geometric spaces (sphere, hyperbolic space)
Other variations

Shapes other than squares (arbitrary finite sets)

Other geometric spaces (sphere, hyperbolic space)

Higher dimensions
Other variations

Shapes other than squares (arbitrary finite sets)

Other geometric spaces (sphere, hyperbolic space)

Higher dimensions

Sorry if I stole your question!